If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-150x=10000
We move all terms to the left:
3x^2-150x-(10000)=0
a = 3; b = -150; c = -10000;
Δ = b2-4ac
Δ = -1502-4·3·(-10000)
Δ = 142500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{142500}=\sqrt{2500*57}=\sqrt{2500}*\sqrt{57}=50\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-50\sqrt{57}}{2*3}=\frac{150-50\sqrt{57}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+50\sqrt{57}}{2*3}=\frac{150+50\sqrt{57}}{6} $
| 3X-4x+7x=66 | | 3c+9-c=-15 | | (53.3)^1/2=2x/(0.5-x) | | 5(y-6)-3y=-34 | | -4(y+2)=5y+1 | | 3x^2-16x-18=-6 | | x^2-20x+36=-7x | | 5x=5x+80 | | .5x*x=25 | | t+3/8=9 | | y=0.75+2 | | 9.09=3r | | 4a+-12+6a=-16 | | 10=2j+2) | | -591=z+-564 | | 14m=-532 | | 2b=1504 | | 30x=36000 | | 1+39=-4(2x-10) | | 2b=-15.04 | | 2(1.4)^x+1=926 | | z2-4z-32=0 | | -5.3=1.1+v/2 | | 3(u-2)=-5u+26 | | -6u+22=-4(u-1) | | -6(v+5)=6v+18 | | 2(w+6)-8w=18 | | 3(c-2=-15 | | k+-0.37=-8.05 | | 168=6h | | 312=b+129 | | 6x-7(3x-12)=9 |